Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

نویسندگان

  • Nicolas Vita
  • Gianpiero Landolfi
  • Arnaud Baslé
  • Semeli Platsaki
  • Jaeick Lee
  • Kevin J. Waldron
  • Christopher Dennison
چکیده

Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1-2) × 1017 M-1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array.

The rapid development in nanoparticle production and application during the past decade requires an easy, rapid, and predictive screening method for nanoparticles toxicity assay. In this study, the toxicological effects and the source of toxicity of copper nanoparticles (CuNPs) are investigated based on a stress-responsive bacterial biosensor array. According to the responses of the biosensing ...

متن کامل

Pathogenic adaptations to host-derived antibacterial copper

Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu(+)) in its reduced form and copper (II) (Cu...

متن کامل

An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase

In eukaryotes, the Cu/Zn superoxide dismutase (SOD1) is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS) to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a co...

متن کامل

Cryptococcus neoformans Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress

Copper (Cu) ions serve as catalytic cofactors to drive key biochemical processes, and yet Cu levels that exceed cellular homeostatic control capacity are toxic. The underlying mechanisms for Cu toxicity are poorly understood. During pulmonary infection by the fungal pathogen Cryptococcus neoformans, host alveolar macrophages compartmentalize Cu to the phagosome, and the ability to detoxify Cu i...

متن کامل

Copper-stress tolerance induced in Phlomis tuberosa depends on nitric oxide accumulation

In this study, we compared the impact of high Cu concentrations on the photosynthetic apparatus and antioxidant capacity of the Phlomis tuberosa. Plants were grown in perlite culture for 5 weeks, and then treated with 0, 100, 200, 300 and 400 µM Cu for 21 days. Results indicated that Phlomis tuberosa plants showed tolerance to 100 and 200 µM Cu. This increased tolerance was achieved through enh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016